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P7: Friday, October 19, 2007; 5pm. 
P8: Friday, October 26, 2007; 5pm. 
 
 
 Note: I expect that most people in Phys. 351 have not taken a course on differential equations.  It’s certainly not a 
prerequisite.  Also, even if you’ve taken such a course, it may not be of much help, since many such courses don’t discuss 
computational methods.  So: relax, and read on... 
 
 
1  Differential Equations 
 
 As we’ve seen in class, physical systems can often be described by differential equations.  Sometimes, 
as for a mass-on-a-spring, we can analytically solve the differential equation, determining, for example, the 
motion of the mass as a function of time, x(t).  This is the ideal situation – and fortunately, there are lots of 
important physical systems amenable to exact solutions.  Sometimes, however, we cannot find an analytic 
solution.  Then we must turn to numerical (i.e. computational) solutions. 
 
 A differential equation relates derivatives of some variables.  For example: 

 )()( tx
m
ktx −=&& describes the motion of a mass m connected to an ideal spring of spring constant k, 

neglecting gravity, friction, etc., as we saw in class.  This is a “second order” differential equation, since it 
involves a second derivative of x.  We can view this equation as a set of instructions: if we know x at some 
time t0, we then know the acceleration at time t0, from the above equation.  Provided that we also know the 
velocity x& at time t0, we can determine from elementary kinematics where the object will be at some slightly 
later time. 
 
 The essence of any numerical scheme to solve differential equations consists simply of the above 
procedure.  We can’t consider a continuum of times, but we can consider known conditions at time t0, to 
determine x at some nearby time t1.  We can then use this information to calculate x at some slightly later 
time t2.  And so on.  We’ll describe this more explicitly shortly. 
 
 There are many methods for numerically solving differential equations.  They differ in their accuracy 
(i.e. their approximation to the true, continuum solution), their applicability to particular types of differential 
equations, and in the amount of computing power they require.  In this lesson, we’ll examine one of them.  
You should go through each line of math yourself, recopying it if it helps you understand. 
 
Much of this discussion is from   
 Computational Physics, by J. M. Thijssen (Cambridge Univ. Press, Cambridge, 1999) 
and from Wikipedia’s article on Verlet Integration. 
 



 
2  The Verlet Algorithm 
 
Consider a differential equation that has the form 
 [ ]ttxGtx ),()( =&&  -- i.e. the function F can depend explicitly on x and t, but not, for example on x& .  
(Our above mass-spring equation satisfies this condition.)  Let’s Taylor expand x around time t0: 
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of order 
4tΔ and higher, which we’re going to ignore...”  (Given the practice you’ve had recently, the above 

equation should be very comprehensible!)  Let’s also expand “backwards:” 
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Therefore, if we know the position at time tt Δ−0  (i.e. one step ago) and time 0t (now), we can determine 
the position at time tt Δ+0 (i.e. one step in the future)! 
 
 We can also calculate the velocity by subtracting our forward and backward expansions: 
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2  Implementing the Verlet Algorithm: A Simple Harmonic Oscillator 
 
 Let’s apply the Verlet algorithm (Eq. 1) to a simple harmonic oscillator, e.g. a mass on a spring.  The 
differential equation is 
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, as discussed above.  An analytic solution can consider 
arbitrary k and m, but the computer requires more concreteness: Let’s say k = 0.1 Newton/meter and m = 1 
kg.  These units set the units of x and t to be meters and seconds, respectively.  (Note that only the ratio k/m 
matters – if you don’t understand this, try considering either analytically or computationally different k and m 
that have the same ratio and see how x(t) looks.)   
 Let’s consider time from t=0 seconds to t=100 seconds.   
 We’ll need to fix some initial conditions.  These will determine the initial two x values that form the 
“starting point” of our Verlet algorithm – see Equation 1.  Let’s say ( ) ( ) smtvtx /20,00 ==== .  We’ll 
also need to fix the time step, Δt (named Deltat in the program below) – this can take some thought, as 
we’ll see.  For now, we’ll just choose Δt = 0.5 seconds.   Our first x position is 0)0( =x , our second is 
. )0()0()0()( =Δ==Δ+==Δ tvttvttxtx  (In determining this, we’re neglecting terms of order Δt 2 and 
higher).  Write the following program in the editor window, thinking about what each line does, and save 
it as an m-file with some name.  Then, run it. 
  

% verletSHO.m 
% Numerical solution to the differential equation of motion for a 



% simple harmonic oscillator, using the Verlet algorithm) 
% m x’’ = -k x, i.e. G[x(t),t] = -k x / m 
% 
% Raghuveer Parthasarathy 
% Oct. 4, 2007 
  
clear all 
close all 
  
x(1) = 0.0;  % initial position, meters 
v(1) = 2.0;  % initial velocity, m/s 
Deltat = 0.5;  % time increment, s 
x(2) = x(1) + v(1)*Deltat;   %We’ll explicitly write x(1), even though 
               % it’s zero here, in case we ever want to change  
               % our initial conditions.  (Otherwise, we might get  
               % confused!) 
k = 0.1;  % Newtons / meter 
m = 1.0;  % kilograms 
Tfinal = 100.0;  % ending time, seconds 
t = 0:Deltat:Tfinal;  % an array of all the time values -- starts at 0 
N = length(t);  % “length” gives the number of elements in an array 
for j=3:N; 
    x(j) = 2*x(j-1) - x(j-2) + Deltat*Deltat*(-1.0*k/m)*x(j-1); 
    v(j-1) = (x(j) - x(j-2))/ (2*Deltat); 
end 
v(N) = (x(N)-x(N-1))/Deltat;  % Why? Because v(N) is not  
                              %set by the above For loop 
figure; plot(t, x, 'ko:'); grid on;  % points and a dotted line 
xlabel('Time, sec. ');  
ylabel('x, meters') 

 
 
You should find that MATLAB calculates and then plots x(t) for this oscillator.  Does it look like a 
sine function? 
 

 
 
Exercises 
 
[Note: If you’ve read and implemented the above text, P7 will take very little time.  P8 takes a bit 
more work.] 
 
(P7, 8 pts.)  Time steps.  For the differential equation above, we know the analytic solution, which I’ll 
denote as xa(t).  First, for the k, m values and initial conditions given above ( ( ) ( ) smtvtx /20,00 ==== ), 
determine the equation for xa(t).  Consult your lecture notes to review the use of initial conditions. 
(a, 4 pts.)  Modify the program above to also plot xa(t).  Create a separate time array – you can call it ta -- 

that is ta = 0:0.1:100.  Calculate the xa array.  Just as in the previous Programming handout, use 
“hold on” to plot xa vs ta as a solid blue line in the same figure as the Verlet solution to the 
differential equation above.  Turn in your plot.  Do the exact and numerical solutions look similar?  (By 
the way, the MATLAB command to take a square root is “sqrt,” e.g. c = sqrt(d).) 

(b, 4 pts.)  Modify the above program to make Deltat a user-input variable, rather than having its value fixed 
in the program, using the input command (see the previous handout).  Run the program with Deltat = 
3.0 and Deltat = 6.0 seconds, generating the numerical solution to the differential equation and also 



plotting the exact solution xa(t) from part (a).  For each of these, turn in your plot.  Mr. K. suggests trying 
Deltat = 0.0001 seconds – why does he think this is a good idea?  Why might it not be a good idea?  (You 
don’t have to try it – just think about it and write down your conclusions.  If you do try it, be sure to look 
at Section 11 of the last handout.) 

 
(P8, 8 pts.)  A swinging pendulum.  In class we showed that for small angles, θ, a swinging pendulum 
exhibits simple harmonic motion.  You may wish to revisit your notes, and make sure you can derive this 
result yourself.  What happens if θ is not small?  We no longer have an analytic solution to the differential 
equation of motion, but we can numerically approximate the solution.  Consider a pendulum of length 0.5 
meters.  Consider the initial conditions to be that ( ) 00 θθ ==t radians, where we’ll test particular values of 

θ0, and ( ) 00 ==tθ& radians per second.  First, write down the analytic solution to the differential equation of 
motion for the pendulum for these particular initial conditions using the small angle approximation – we’ll call this 
solution θa(t).  (You determined this in Problem Set 3.)  Next, write a program to use the Verlet algorithm to 
solve the pendulum’s differential equation without the small angle approximation – i.e. keeping the sin(θ) 
intact.  Graph the resulting θ(t) and θa(t) on the same plot.  Let the time array span t=0 to Tfinal, where 
Tfinal is 6 times the period of oscillation of a simple pendulum.  You’ll have to figure out a good Deltat 
value to use.  Do this for θ0=3, 20, and 40 degrees (don’t forget to convert these to radians!).  Turn in the 
plots and your program listing. 


